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Abstract. Infrastructure as Code (IaC) has enabled cloud customers
to have more agility in creating and modifying complex deployments of
cloud-provisioned resources. By writing a configuration in IaC languages
such as CloudFormation, users can declaratively specify their infrastruc-
ture and CloudFormation will handle the creation of the resources. How-
ever, understanding the complexity of IaC deployments has emerged as
an unsolved issue. In particular, estimating the cost of an IaC deploy-
ment requires estimating the future usage and pricing models of every
cloud resource in the deployment. Gaining transparency into predicted
usage/costs is a leading challenge in cloud management. Existing work
either relies on historical usage metrics to predict cost or on coarse-grain
static analysis that ignores interactions between resources. Our key in-
sight is that the topology of an IaC deployment imposes constraints on
the usage of each resource, and we can formalize and automate the rea-
soning on constraints by using an SMT solver. This allows customers to
have formal guarantees on the bounds of their cloud usage. We propose
a tool for fine-grained static usage analysis that works by modeling the
inter-resource interactions in an IaC deployment as a set of SMT con-
straints, and evaluate our tool on a benchmark of over 1000 real world
IaC configurations.

Keywords: Infrastructure as Code, Static Analysis, Cost Estimation,
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1 Introduction

One of the most pressing issues with IaC deployments is in the difficulty of esti-
mating pricing [1]. Despite cloud providers’ thorough documentation of pricing
models and strong tool support, challenges remain in understanding the cost
of large deployments. In a recent industry survey, it was found that 49% of IT
executives find it difficult to get cloud costs under control, and 54% of those
believe a primary challenge is a lack of visibility into cloud usage [1]. The issue
of IaC analysis has also been recognized by the academic community to be of
critical significance [3, 5, 6].
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(a) An example CloudFormation stack topology

A.POST +A.GET = 1000000

0 ≤ w ≤ 3 ∗A.POST

0 < r ≤ A.POST + 2 ∗A.GET

(b) Constraints on usage

Fig. 1: Motivating example

We identify two categories of existing tools for IaC cost estimation - those
that rely on dynamic analysis and those that rely on static analysis. Dynamic
analysis tools fall short in capturing topological changes to infrastructure, and
existing static analysis tools require too much guesswork from the user.

AWS’s Cost Explorer is one example of a dynamic analysis tool for IaC
pricing. This tool allows users to track the ongoing usage and costs incurred
of all resources in a live CloudFormation deployment. While dynamic analysis
of IaC is helpful for existing infrastructure, such tools cannot be used for new
deployments or topological modifications to existing infrastructure. Even a small
change to the topology of an infrastructure might redirect user requests through
a different path of the IaC resource graph, rendering past resource specific usage
patterns irrelevant as topological changes induce a change in the dataflow.

AWS’s Pricing Calculator, on the other hand, is one example of a static anal-
ysis tool for IaC pricing. This tool allows users to load a CloudFormation file,
provide usage estimates, and see the anticipated cost of the overall infrastruc-
ture. However, estimating usage is extremely difficult and a regular pain point
for customers. If the user is creating a new infrastructure, how can they esti-
mate the usage? If there is a significant change to the topology of an existing
infrastructure, how does the user know the extent to which past usage data can
be extrapolated to the new infrastructure? Resource usage bounds can be also
a useful analysis strategy for other system inquires, such as in the style of taint
analysis, where a user may want to discover how one resource propagates data
through the infrastructure, and which other resources are will see this data (have
their usage impacted).

At a high level, we propose a static analysis method for IaC configuration
files that assists users in making correct usage estimates. Our approach is, at its
core, a modeling of the graph of the IaC and propagating local constraints across
edges and nodes to be able to check global constraints. The key contributions of
this work are:
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1. a formal model of a subset of infrastructure-as-code that focuses on serverless
architectures and message flow;

2. Cloudcap, a tool that models the resource usage of cloud infrastructures as a
set of composable SMT constraints, allowing for user queries about validity
of usage estimates and usage bounds of the overall IaC stack;

3. an evaluation on a benchmark dataset of over 1000 real world IaC files.

2 Motivating Example

As an illustrative example, consider the infrastructure depicted in Figure 1a.
Assuming that this infrastructure is new, there will be no available historical
usage data. When a user wants to estimate the cost associated with this in-
frastructure, they must provide estimates for the utilization of each resource.
Generating these estimates requires the user to manually infer the relationship
between resources, such as the correlation between (A) and (E), based on the
infrastructure’s topology.

For instance, if we envision 1 million requests on resource (A), then the
number of read requests (r) and write requests (w) on resource (E) must adhere
to the system of inequalities listed in Fig. 1b. Correctly inferring these bounds
requires an understanding of how every resource propagates requests through the
graph, while accounting for alterations in the quantity and types of requests.
Inferring this set of constraints is a non-trivial task and requires significant
experience and familiarity with all the configuration options of every resource.
This process only becomes more difficult with larger and more complex IaC
configurations.

3 A Formal Model of IaC

Infrastructure as Code is a powerful computational model, with many different
resource types for compute, storage, load balancing, etc. In order to formalize
our analysis technique, we need a formal model of IaC. Since supporting the full
set of resource types for any one cloud provider is an engineering effort outside
the scope of this work, we present a model of a subset of an IaC system that
focuses on resource usage. This is a typical strategy used in the analysis of IaC,
where a formal model captures a subset of the relevant behavior and resources
for the application at hand [11].

Usually, a cloud infrastructure is comprised of multiple resources (or services)
that pass messages over the network to communicate with each other. Formally,
an infrastructure forms a graph, where the nodes are the resources and the di-
rected edges are the message channels from a resource to another. The resources
may send messages to and receive messages from the rest of the world, thus we
can regard the "world" also as a node within the graph. Upon receiving a mes-
sage over an incoming edge, a node can react by sending zero or more messages
over each of its outgoing edges.
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To formalize this notion of IaC, let M denote the set of all messages. In a
most general setting, for every node n and for each of its outgoing edges e, there
exists a function fe : M → N, such that upon receiving a message m, n sends
fe(m) messages over e. Given a predetermined finite set of message types MT ,
each message m has a message type mtype(m) ∈ MT . Then for all message type
t and outgoing edge e, there exists a function ge : MT → N such that for all
messages m of type t, ge(t) = fe(m). This restricts each node to always send
the same number of outgoing messages for each incoming message type. In other
words, the resources have a predetermined finite set of message-sending patterns
that do not change over time. Note that the granularity of the model depends
on what one chooses the set of message types to be.

In the current version, Cloudcap focuses on AWS serverless cloud infrastruc-
tures, supporting popular resources including (but not limited to) APIGateway,
DynamoDB, SQS, SNS, S3 and Lambda. The set of message types includes a
generic message type request that represents all messages, and also additional
resource-specific message types for certain resources. For example, APIGateway
has additional message types that corresponds to HTTP methods (GET, POST,
PUT, etc.); DynamoDB has dynamodb_read and dynamodb_write message types.
This set of message types is generic enough to be applied to all infrastructures
using the supported resources. For future work, one can also imagine that user-
defined filters in the IaC code can be utilized to populate a customized set of
message types for each IaC stack.

4 System Overview

As shown in Fig. 2, our system’s input is an IaC configuration provided by the
user. Cloudcap uses this to build a resource graph, instantiates variables that
represent the resource usage measurements, and generates constraints that relate
the variables and model the message-flow behaviors within the infrastructure. It
is currently implemented for the AWS CloudFormation IaC platform targeting
the AWS cloud platform, but the process can be similarly applied to other IaC
languages (e.g. Terraform) and cloud platforms (e.g. GCP).

4.1 Building the resource graph

The major cloud platforms provide a large variety of resource types. We will use
RT to denote the set of resource types.

For each resource type, they receive messages of various message types. For
example, an AWS DynamoDB database can receive reads and writes, and an
AWS APIGateway can receive GETs and POSTs. Following § 3, we denote MT
to be the set of all message types (e.g. dynamodb_read), and use mtypes : RT →
2MT to denote the assignments from a resource type to its set of message types.

From the topology defined in the IaC definitions, we can build a resource
graph, where the nodes N are the resources and the directed edges E ⊆ N ×N
are direct message channels. We note that the resource graph is a dataflow
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Fig. 2: System diagram

graph instead of a dependency graph. Unlike a IaC dependency graph in which
a directed edge corresponds to a partial order of deployment [11], a directed
edge in the resource graph models how a resource induces requests to specific
other resources. For later use, we also define the function rtype : N → RT that
retrieves each node’s resource type.

4.2 Node variables and edge variables

After building the resource graph from the dataflow analysis, we annotate the
resource graph with variables. To model the quantitative details of the dataflow
behaviors within the infrastructure, we instantiate node variables and edge vari-
ables.

A node variable represents the total count of a single message type received
by a resource. The set of all node variables NV has a one-to-one correspondence
to {(n,m)|n ∈ N,m ∈ mtypes(rtype(n))}. In other words, for each node, we
instantiate a node variable for each message type associated with its resource
type.

An edge variable represents the count of a message type that a node receives
over a specific edge. The set of all edge variables EV has a one-to-one correspon-
dence to {(s, t,m)|(s, t) ∈ E,m ∈ mtypes(rtype(t))}. In other words, for each
edge, we instantiate an edge variable for each message type associated with the
destination node.

To facilitate the constraint generation step next, for each node n0, we let

– NV (n0) = {v|v = (n,m) ∈ NV, n = n0} denote the set of node variables for
n0;

– EVin(n0) = {v|v = (s, t,m) ∈ EV, t = n0} denote the set of incoming edge
variables, i.e. the edge variables for which n0 is the source node;

– EVout(n0) = {v|v = (s, t,m) ∈ EV, s = n0} denote the set of outgoing edge
variables, i.e. the edge variables for which n0 is the destination node.
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4.3 Constraint generation

A constraint ϕ is an SMT formula such that FV (ϕ) ⊆ NV ∪EV , where FV (ϕ)
denotes the set of variables that occur free in ϕ. For each variable v ∈ NV ∪EV ,
there may be zero or more basic constraints that describe basic properties of the
variables. At the moment, all variables have just the basic constraints that they
are greater or equal to 0.

Next, for each node n ∈ N , the tool generates zero or more constraints. Each
of these constraints ϕ ∈ C is categorized as one of the following:

1. incoming: for a node variable nv ∈ NV (n), the constraint ϕ relates nv to
the incoming edge variables, i.e. FV (ϕ) ⊆ {nv} ∪ EVin(n)

2. intrinsic: the constraint ϕ relates node n’s node variables to each other, i.e.
FV (ϕ) ⊆ NV (n)

3. outgoing: for an outgoing edge variable ev ∈ EVout(n), the constraint ϕ
relates ev to its node variables, i.e. FV (ϕ) ⊆ NV (n) ∪ {ev}.

Intrinsic constraints capture intra-resource behavior. For example, in the
motivating example Fig. 1a, all incoming requests to (A) should be equal to the
sum of the POST and GET requests to (A). Written as an SMT constraint,
A.requests = A.GETs+ A.POSTs.

Incoming and outgoing constraints capture inter-resource behavior. For the
motivating example from § 2, the number of POST requests to (A) should equal
the number of requests to (C). Written as an SMT constraint, the outgoing
constraint from A to C is A.GETs = A_C.requests. These are more difficult to
derive as they can arise from both the IaC level configuration as well as the
application layer (discussed in § 4.4 and § 4.5).

These three types of constraints allow the tool to model the system globally
with only node-local knowledge. When generating constraints for a node, there
is no need for graph traversal of any kind. The global set of constraints can be
collected by simply iterating through the nodes.

4.4 IaC Layer Constraints

For many modern cloud serverless resources (e.g. AWS SQS and APIGateway),
Cloudcap is able to generate all the necessary constraints using the information
within the CloudFormation templates. Take our motivating example from § 2.
The node (C) is an SQS service with FIFO and deduplication enabled. By con-
sulting the AWS documentation, we know that with these configurations, the
requests that come out of (C) (and in this graph are sent to (D)) will be less
than or equal to the requests sent to SQS. This induces an outgoing constraint
C.requests >= C_D.requests. This constraint is an IaC layer constraint and
can be derived purely from the IaC code. Every cloud resource is given a SMT
constraint template, as manually derived from the documentation, that is used
to generate these constraints.
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4.5 Application Layer Constraints

For cloud resources with programmable behaviors, additional knowledge about
the application program allows us to generate constraints that are not discover-
able with just the IaC definitions. We call these application layer constraints. For
example, in the motivating example, we have a constraint on the edge from (D)
to (E) that the Lambda will induce 1 read and 3 writes to the DynamoDB (E) for
every request to the Lambda. However, the information needed to generate such
a constraint is beyond the scope of the IaC configuration, and thus Cloudcap is
currently not able to infer application layer constraints. Cloudcap instead relies
on user-provided custom SMT constraints for application layer constraints. In
§ 7.1, we discuss some approaches one may take to automate the inference of
application layer constraints.

5 Evaluation

Methodology We draw our benchmark set from the PIPr dataset of public IaC
programs [15]. PIPr contains 7104 public repositories of Programming Languages
Infrastructure as Code (PL-IaC) projects written with Pulumi, AWS CDK or
Terraform. With automated scripts (provided in our GitHub repository4), we
identify the AWS CDK projects implemented in JavaScript or TypeScript, and
run ‘npm install; cdk synth’ in each project to synthesize a CloudFormation
template for each. The result is our benchmark set containing 1062 CloudFor-
mation templates.

5.1 Quantitative Analysis

Cloudcap currently supports 12 AWS CloudFormation resource types. The tool
also flags 22 resource types as non-dataflow related and omits these in the con-
struction of the resource graph. A resource type is non-dataflow related if it is not
an infrastructure resource (for instance, IAM policies and Lambda permissions).
Each supported resource type typically has between 1 to 3 message types.

As a tool designed to be integrated into an existing user workflow, Cloudcap
completes in a short amount of time, spending only 0.5 ± 0.15 seconds for all
samples on a 32GB M1 Max MacBook Pro. As a proxy measure of complexity,
we looked at the 457 templates that have at least 3 supported resource nodes,
and found that the average graph degree (i.e. number of edges directed into a
node) is 0.9 with a standard deviation of 0.6. This means that IaC resource
graphs are usually very sparse and thus gives us confidence that Cloudcap will
scale well, even with larger IaC configurations. Combined with the finding that
the number of resources is usually small (benchmark set averaging 21.9 with
standard deviation of 21.1), we don’t expect performance to be an issue even on
IaC configurations beyond our benchmark set.

4 https://github.com/anonymized/anonymized
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Fig. 3: Number of constraints for the benchmark samples (top 100).

We ranked the samples by the number of constraints generated by Cloudcap,
and show the top 100 samples in Fig. 3. Each bar is also broken down into the four
constraint types: basic, incoming, intrinsic and outgoing. This chart shows that
a small number of IaC configurations have significant complexity (benchmark
#1 in Fig. 3 has 529 constraints), and there is a long tail of IaC configurations
that still have enough complexity such that there is value in automating this
reasoning task (benchmark #100 in Fig. 3 has 39 constraints).

5.2 Sample Benchmark

To concretely demonstrate the workflow of Cloudcap, we walk through an il-
lustrative example of a developer tasked with implementing and deploying a
simple project. The project is one of our benchmarks from the PIPr dataset
(ID 501027421), and is a public GitHub repository named "HektorCyC/url-
shortener-app". Written in TypeScript and AWS CDK, the project is a URL
shortener application, in the form of a chain from APIGateway to Lambda to
DynamoDB. When run through Cloudcap, this IaC configuration has 28 con-
straints (ranking #138 in the benchmarks, sorted by number of constraints).

After coding up the project, the developer synthesizes a CloudFormation
template named cfn.yaml and runs cloudcap estimates-template cfn.yaml.
This command provides them with a template for usage estimates. After being
filled in, the template looks as following:

apigateway :
GETs : 100000000
PATCHs: 100000000
DELETEs: 100000000

dynamodb_table :
dynamodb_reads : 3000000

The Lambda application receives GET, PATCH and DELETE requests from
the APIGateway. For a GET request, it reads the DynamoDB once; for a PATCH
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or DELETE request, it reads once and writes once to the DynamoDB. The devel-
oper writes these application layer constraints as custom SMT-LIB constraints
in a file named app_constraints.smt2, and runs cloudcap check cfn.yaml
app_constraints.smt2. In the output, the tool reports that the user-provided
estimates are invalid. The developer reviews the estimates again, discovering
that they made a mistake and left out some zeros in the dynamodb_read usage
estimate.

6 Related Work

Our work is related to cost analysis of cloud deployments and workload character-
iztion. Workload characterization has been an active research area with a focus
on understanding resource utilization, performance, and cost implications [4].
Traditional approaches to workload characterization often involve profiling ap-
plications or services to understand their resource requirements and performance
characteristics. These studies typically rely on statistical analysis of historical
data [2,16]. Some existing works aim at dynamic cost estimation by considering
real-time resource utilization metrics and billing information. These approaches
often leverage machine learning techniques to predict costs based on historical
usage patterns [7,8,14]. However, they struggle to capture the intricate relation-
ships and dependencies between resources defined in IaC deployments. Recent
research has explored topology-based cost models for understanding and optimiz-
ing cloud deployments [10, 12, 13]. These approaches consider the arrangement
and relationships between different components in an IaC deployment. However,
they do not explicitly model the constraints imposed by the deployment topol-
ogy and the component characteristics on resource usage. Our proposed system
instead builds a topology-based resource graph to enforce constraints inherent in
the component (intrinsic contraints) and the relationship between components
(incoming and outgoing constraints), providing end users with formal guarantees
on usage bounds.

Unlike existing approaches that predominantly rely on accurate usage esti-
mates to provide cost estimation in cloud deployments, our system focuses on
evaluating the feasibility of such estimates by modeling the intricate relation-
ships between infrastructure components in the form of a resource graph. By
employing SMT constraints to encapsulate these inter-resource interactions, our
approach allows for a more rigorous examination of the deployment’s constraints,
informing end users whether the estimated resource usage aligns with the inher-
ent limitations and relationships defined within the infrastructure components.
This novel perspective does not only enable existing approaches to predict costs
more accurately but also to ascertain the validity and appropriateness of initial
usage estimates given the constraints imposed by the deployment’s topology.
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7 Discussion

A limitation of the evaluation is the lack of usage estimates in the benchmark.
The PIPr dataset provides sufficient IaC definition samples, but does not pro-
vide corresponding resource usage estimates. Therefore, Cloudcap is not bench-
marked in its capability to check them against the generated constraints. In fact,
usage estimates are highly proprietary data, so they are generally not publicly
available. However, we don’t expect validating the usage estimates against the
generated constraints to be an expensive problem.

A few software engineering issues also still need to be resolved for the tool
to be adopted in industrial workflows. Often, especially in enterprise environ-
ments, IaC deployments are modularized. Developing an application from mul-
tiple stacks is a common and even best practice in modern IT operations [9].
However, Cloudcap requires a full view of the application’s architecture to pro-
vide a comprehensive set of constraints. One workaround is to create a merged
template strictly for running cost estimates. Another is to constrain individual
templates with Cloudcap and manually supply constraints that would connect
the models together. As a novel approach to cloud resource usage analysis, a
user study would help to find the to most effective ways to integrate the tool
into existing usage analysis workflows.

7.1 Application Layer Constraints from Program Analysis

For resources with programmable behaviors (e.g. AWS Lambda), the IaC defini-
tions are usually paired with the application source code. To extract the applica-
tion layer constraints, an option is to run symbolic execution on the application
source code. This might be tractable if the application is a relatively small code
snippet, but will be more difficult if the program logic is complex. In the case
that code analysis is not feasible, if we are updating an existing infrastructure
and have log data (e.g. from the AWS Cost Explorer), we can infer some relation
between the number of requests from one resource to the next. In this case, we
can check the logs and see the timestamped relations between incoming requests
on the neighboring nodes. The local relations on usage can be more reliably
pulled from log data than global constraints, as the global relations depend on
the topology of the infrastructure.

In the current version, Cloudcap focuses on the Iac layer and allows user to
submit the application layer constraints as custom SMT-LIB assertions. This
allows the tool to remain useful for infrastructures that utilize unsupported re-
sources. Take the motivating example. If we replace resource (B) with an EC2
instance, Cloudcap cannot generate estimates for the entire architecture because
that would require understanding the application runtime behavior. However, the
user may understand that behavior and can insert corresponding constraints.
Even in this case, the tool still greatly reduces the manual work and room for
human error by taking care of the rest of the architecture.
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7.2 Reusing Historical Usage Data

The static analysis and usage estimate procedure described above gives user the
ability to put constraints on their infrastructure usage. However, for updates to
existing infrastructure, historical usage may be available and valuable. We can
incorporate this valuable data into our procedure by identifying subgraphs of
the infrastructure that are minimally impacted by the IaC topological changes.
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